\(\int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x)) (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [1188]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 41, antiderivative size = 142 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 a (3 (A+B)+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a (5 A+7 (B+C)) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a (5 A+7 (B+C)) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 a (A+B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a A \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d} \]

[Out]

2/5*a*(3*A+3*B+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/
21*a*(5*A+7*B+7*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5
*a*(A+B)*cos(d*x+c)^(3/2)*sin(d*x+c)/d+2/7*a*A*cos(d*x+c)^(5/2)*sin(d*x+c)/d+2/21*a*(5*A+7*B+7*C)*sin(d*x+c)*c
os(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {4197, 3112, 3102, 2827, 2719, 2715, 2720} \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 a (5 A+7 (B+C)) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a (3 (A+B)+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a (5 A+7 (B+C)) \sin (c+d x) \sqrt {\cos (c+d x)}}{21 d}+\frac {2 a (A+B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}+\frac {2 a A \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d} \]

[In]

Int[Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(2*a*(3*(A + B) + 5*C)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*a*(5*A + 7*(B + C))*EllipticF[(c + d*x)/2, 2])/(2
1*d) + (2*a*(5*A + 7*(B + C))*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(21*d) + (2*a*(A + B)*Cos[c + d*x]^(3/2)*Sin[c
+ d*x])/(5*d) + (2*a*A*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(7*d)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3112

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*d*Cos[e + f*x]*Sin[e + f*x]*((a +
 b*Sin[e + f*x])^(m + 1)/(b*f*(m + 3))), x] + Dist[1/(b*(m + 3)), Int[(a + b*Sin[e + f*x])^m*Simp[a*C*d + A*b*
c*(m + 3) + b*(B*c*(m + 3) + d*(C*(m + 2) + A*(m + 3)))*Sin[e + f*x] - (2*a*C*d - b*(c*C + B*d)*(m + 3))*Sin[e
 + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&
  !LtQ[m, -1]

Rule 4197

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sec[(e_.)
 + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*
Cos[e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}
, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x)) \left (C+B \cos (c+d x)+A \cos ^2(c+d x)\right ) \, dx \\ & = \frac {2 a A \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2}{7} \int \sqrt {\cos (c+d x)} \left (\frac {7 a C}{2}+\frac {1}{2} a (5 A+7 (B+C)) \cos (c+d x)+\frac {7}{2} a (A+B) \cos ^2(c+d x)\right ) \, dx \\ & = \frac {2 a (A+B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a A \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {4}{35} \int \sqrt {\cos (c+d x)} \left (\frac {7}{4} a (3 (A+B)+5 C)+\frac {5}{4} a (5 A+7 (B+C)) \cos (c+d x)\right ) \, dx \\ & = \frac {2 a (A+B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a A \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{5} (a (3 (A+B)+5 C)) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{7} (a (5 A+7 (B+C))) \int \cos ^{\frac {3}{2}}(c+d x) \, dx \\ & = \frac {2 a (3 (A+B)+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a (5 A+7 (B+C)) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 a (A+B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a A \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{21} (a (5 A+7 (B+C))) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a (3 (A+B)+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a (5 A+7 (B+C)) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a (5 A+7 (B+C)) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 a (A+B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a A \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.22 (sec) , antiderivative size = 1240, normalized size of antiderivative = 8.73 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=a \left (\sqrt {\cos (c+d x)} (1+\cos (c+d x)) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-\frac {(3 A+3 B+5 C) \cot (c)}{5 d}+\frac {(23 A+28 B+28 C) \cos (d x) \sin (c)}{84 d}+\frac {(A+B) \cos (2 d x) \sin (2 c)}{10 d}+\frac {A \cos (3 d x) \sin (3 c)}{28 d}+\frac {(23 A+28 B+28 C) \cos (c) \sin (d x)}{84 d}+\frac {(A+B) \cos (2 c) \sin (2 d x)}{10 d}+\frac {A \cos (3 c) \sin (3 d x)}{28 d}\right )-\frac {5 A (1+\cos (c+d x)) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{21 d \sqrt {1+\cot ^2(c)}}-\frac {B (1+\cos (c+d x)) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d \sqrt {1+\cot ^2(c)}}-\frac {C (1+\cos (c+d x)) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d \sqrt {1+\cot ^2(c)}}-\frac {3 A (1+\cos (c+d x)) \csc (c) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{10 d}-\frac {3 B (1+\cos (c+d x)) \csc (c) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{10 d}-\frac {C (1+\cos (c+d x)) \csc (c) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d}\right ) \]

[In]

Integrate[Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

a*(Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])*Sec[c/2 + (d*x)/2]^2*(-1/5*((3*A + 3*B + 5*C)*Cot[c])/d + ((23*A + 28
*B + 28*C)*Cos[d*x]*Sin[c])/(84*d) + ((A + B)*Cos[2*d*x]*Sin[2*c])/(10*d) + (A*Cos[3*d*x]*Sin[3*c])/(28*d) + (
(23*A + 28*B + 28*C)*Cos[c]*Sin[d*x])/(84*d) + ((A + B)*Cos[2*c]*Sin[2*d*x])/(10*d) + (A*Cos[3*c]*Sin[3*d*x])/
(28*d)) - (5*A*(1 + Cos[c + d*x])*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec
[c/2 + (d*x)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[
c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(21*d*Sqrt[1 + Cot[c]^2]) - (B*(1 + Cos[c
+ d*x])*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^2*Sec[d*x
- ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]
]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) - (C*(1 + Cos[c + d*x])*Csc[c]*Hypergeometr
icPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 -
Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - Arc
Tan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) - (3*A*(1 + Cos[c + d*x])*Csc[c]*Sec[c/2 + (d*x)/2]^2*((Hypergeometric
PFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + Ar
cTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*S
qrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan
[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(
10*d) - (3*B*(1 + Cos[c + d*x])*Csc[c]*Sec[c/2 + (d*x)/2]^2*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x +
 ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x +
ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + A
rcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^
2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(10*d) - (C*(1 + Cos[c + d*x])*Csc[
c]*Sec[c/2 + (d*x)/2]^2*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan
[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x
 + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[
c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x +
 ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(480\) vs. \(2(181)=362\).

Time = 26.42 (sec) , antiderivative size = 481, normalized size of antiderivative = 3.39

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \left (240 A \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-528 A -168 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (448 A +308 B +140 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-122 A -112 B -70 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+25 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-63 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+35 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-63 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+35 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-105 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{105 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(481\)

[In]

int(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(240*A*sin(1/2*d*x+1/2*c)^8*cos(1/2*d*x+1/2*c
)+(-528*A-168*B)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(448*A+308*B+140*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+
1/2*c)+(-122*A-112*B-70*C)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+25*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/
2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-63*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x
+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+35*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*
c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-63*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-
1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+35*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-105*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*
EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)
/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.42 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {-5 i \, \sqrt {2} {\left (5 \, A + 7 \, B + 7 \, C\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} {\left (5 \, A + 7 \, B + 7 \, C\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 i \, \sqrt {2} {\left (3 \, A + 3 \, B + 5 \, C\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 i \, \sqrt {2} {\left (3 \, A + 3 \, B + 5 \, C\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (15 \, A a \cos \left (d x + c\right )^{2} + 21 \, {\left (A + B\right )} a \cos \left (d x + c\right ) + 5 \, {\left (5 \, A + 7 \, B + 7 \, C\right )} a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, d} \]

[In]

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/105*(-5*I*sqrt(2)*(5*A + 7*B + 7*C)*a*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*I*sqrt(2
)*(5*A + 7*B + 7*C)*a*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 21*I*sqrt(2)*(3*A + 3*B + 5*
C)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 21*I*sqrt(2)*(3*A + 3
*B + 5*C)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(15*A*a*cos(
d*x + c)^2 + 21*(A + B)*a*cos(d*x + c) + 5*(5*A + 7*B + 7*C)*a)*sqrt(cos(d*x + c))*sin(d*x + c))/d

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(7/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {7}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)*cos(d*x + c)^(7/2), x)

Giac [F]

\[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {7}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)*cos(d*x + c)^(7/2), x)

Mupad [B] (verification not implemented)

Time = 18.57 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.52 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2\,B\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,C\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,C\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}-\frac {2\,A\,a\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,A\,a\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,B\,a\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

(2*B*a*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3*d) + (2*C*a*(cos(c + d*x)^(1/2)*sin
(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3*d) + (2*C*a*ellipticE(c/2 + (d*x)/2, 2))/d - (2*A*a*cos(c + d*x)^
(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (2*A*a*cos(c +
d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(1/2)) - (2*B*a*cos
(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))